3d Quantum Field Theories and Langlands duality

Hiraku Nakajima (Kavli IPMU, the University of Tokyo)

Oct. 15, 2024

ICMAM Latin America 2024 @ Online

Reference : arXiv:2409.06303

BenZvi-Sakellaridis-Venkatesh arXiv:2409.04677

Axiomatic approach to (topological) Quantum Field Theories (Atiyah) A d-dim Topological Quantum Field Theory Z is an `assignement':

1. (d-1) dim closed manifold $X \rightsquigarrow$ a (complex) vector space Z(X)(quantum Hilbert space) 2. d-dim manifold M with boundary $\partial M \rightsquigarrow$ a vector $Z(M) \in Z(\partial M)$

such that $\cdot Z(X_1 \sqcup X_2) = Z(X_1) \otimes_{\mathbb{C}} Z(X_2), \ Z(-X) = Z(X)^*$ $\cdot \underbrace{M_1}_{\swarrow} \underbrace{M_2}_{\checkmark} \Rightarrow Z(M_1 \cup_X M_2) = Z(M_1) \circ Z(M_2)$

<u>Remark</u>. If Z is defined for arbitrary d-dim manifolds, Z(X) is automatically finite dimensional. This is too restrictive for our purpose. We will use TQFT in an informal way. Extended Topological Quantum Field Theories : Allow codim 1 `Defects'

Impose bdry conditions (Dirichlet, Neumann, ...)

 $\begin{array}{ll} \mbox{Example : Consider QFT of the space of all maps} & f\colon M\to T \\ & \mbox{to a target space } T \ . \ We \ choose \ a \ submanifold \ S\subset T \\ & \mbox{and consider } f \ \ such \ that \ f(\ horizontal \ bdry)\subset S \ . \end{array}$

All bdry conditions form a category:

$$= \operatorname{Hom}(\bullet, \bullet)$$

Above picture = composite of hom's.

cf. Fukaya category of a symplectic manifold

Kapustin-Witten '07

Geometric Langlands is a consequence of S-duality of 4d SUSY **G**-Yang-Mills theory for $M^4 = \bullet \times C^2$ where C is a Riemann surface and **G** is a complex reductive group.

Categories of bdry conditions, after `twisting', are relevant ones for geometric Langlands: $Fuk(T^*Bun_{\mathbf{G}}(C)) \cong Shv(Bun_{\mathbf{G}}(C))$ $D(Coh(Loc_{\mathbf{G}}(C)))$

Then S-duality claims

```
\operatorname{Fuk}(T^*\operatorname{Bun}_{\mathbf{G}}(C)) \cong D(\operatorname{Coh}(\operatorname{Loc}_{\mathbf{G}^{\vee}}(C)))
```

where \mathbf{G}^{\vee} is the Langlands dual group.

<u>Point</u>: when *C* is small, 4d YM theory is 2d σ - model whose target space is Hitchin moduli space $\operatorname{Hit}_{\mathbf{G}}(C)$ on *C*. S-duality becomes 2d (homological) mirror symmetry. Gaiotto-Witten '09 (cf. Gaiotto '18)

- 3d SUSY QFT's give a class of bdry conditions.
- S-duality is related to <u>3d mirror symmetry</u> of 3d SUSY QFT's.

An example of 3d SUSY QFT

 ${f G} \curvearrowright {f M}$: hamiltonian action of a complex reductive group on a smooth affine algebraic symplectic manifold (with a condition, called anomally free)

Therefore we expect $\mathbf{G} \curvearrowright \mathbf{M} \xrightarrow{} \mathcal{A}n$ object $\mathcal{L}(C, \mathbf{G} \curvearrowright \mathbf{M})$ in $\operatorname{Fuk}(T^*\operatorname{Bun}_{\mathbf{G}}(C))$ \swarrow An object $\mathcal{V}(C, \mathbf{G} \curvearrowright \mathbf{M})$ in $D(\operatorname{Coh}(\operatorname{Loc}_{\mathbf{G}}(C)))$

Moreover, the S-dual bdry condition also comes from another hamiltonian space $\mathbf{G}^{ee} \curvearrowright \mathbf{M}^{ee}$ in many examples. Or one can at least `approximate' the dual by $\mathbf{G}^{ee} \curvearrowright \mathbf{M}^{ee}$. (Coulomb branches)

A Conjectural Mathematical Consequence :

 $\operatorname{Fuk}(T^*\operatorname{Bun}_{\mathbf{G}}(C)) \ni \mathcal{L}(C, \mathbf{G} \frown \mathbf{M}) \longleftrightarrow \mathcal{V}(C, \mathbf{G}^{\vee} \frown \mathbf{M}^{\vee}) \in D(\operatorname{Coh}(\operatorname{Loc}_{\mathbf{G}^{\vee}}(C)))$ $D(\operatorname{Coh}(\operatorname{Loc}_{\mathbf{G}}(C)) \ni \mathcal{V}(C, \mathbf{G} \frown \mathbf{M}) \longleftrightarrow \mathcal{L}(C, \mathbf{G}^{\vee} \frown \mathbf{M}^{\vee}) \in \operatorname{Fuk}(T^*\operatorname{Bun}_{\mathbf{G}^{\vee}}(C))$

under geometric Langlands correspondence.

Example (conjecture) $\mathbf{G} \curvearrowright \mathbf{M} = \mathbf{G} \times \mathcal{S} \longleftrightarrow \mathbf{G}^{\vee} \curvearrowright \mathbf{M}^{\vee} = \{0\}$ (equivariant Kostant-Slodowy slice)

 $\begin{array}{l} \rightsquigarrow \quad \text{Hitchin section} \longleftrightarrow \mathcal{O}_{\operatorname{Loc}_{\mathbf{G}^{\vee}}(C)} \\ ? \longleftrightarrow 0 \; \operatorname{section} \subset T^* \operatorname{Bun}_{\mathbf{G}^{\vee}}(C) \end{array} \text{ under geometric Langlands} \end{array}$

Examples (1) $\mathbb{C}^{\times} \curvearrowright T^*\mathbb{C}^{\times} \longleftrightarrow \mathbb{C}^{\times} \curvearrowright \{0\}$

(2) $\mathbb{C}^{\times} \curvearrowright \mathbb{C}^{2} \longleftrightarrow \mathbb{C}^{\times} \curvearrowright \mathbb{C}^{2}$ More generally $\mathbb{C}^{\times} \curvearrowright \mathbb{C}^{2\ell} \longleftrightarrow \mathbb{C}^{\times} \curvearrowright \mathbb{C}^{2}/(\mathbb{Z}/\ell)$ weight 1 weight 1

(3) $\mathbb{C}^{\times} \curvearrowright \mathbb{C}^{2} \longleftrightarrow \mathbb{C}^{\times} \curvearrowright \mathbb{C}^{2}/(\mathbb{Z}/\ell)$ weight ℓ Important generalization of bdry conditions : Interface G_1, G_2 : pair of cpx reductive groups

This gives pairs of functors, intertwined by Langlands correspondence

$$\operatorname{Fuk}(T^*\operatorname{Bun}_{\mathbf{G}_2}(C)) \cong D(\operatorname{Coh}(\operatorname{Loc}_{\mathbf{G}_2}(C)))$$

$$\uparrow$$

$$\operatorname{Fuk}(T^*\operatorname{Bun}_{\mathbf{G}_1}(C)) \cong D(\operatorname{Coh}(\operatorname{Loc}_{\mathbf{G}_1}(C)))$$

Trivial Example: $\mathbf{G} \curvearrowright T^*\mathbf{G} \curvearrowleft \mathbf{G} \longleftrightarrow \mathbf{G}^{\vee} \curvearrowright T^*\mathbf{G}^{\vee} \curvearrowleft \mathbf{G}^{\vee}$

Non - Example :(Eisenstein series) $\mathbf{T} \curvearrowright T^*(\mathbf{G}/\mathbf{U}) \curvearrowleft \mathbf{G} \longleftrightarrow \mathbf{T}^{\vee} \curvearrowright T^*(\mathbf{G}^{\vee}/\mathbf{U}^{\vee}) \curvearrowleft \mathbf{G}^{\vee}$

Example: $SO_{2n} \curvearrowright \mathbb{C}^{2n} \otimes \mathbb{C}^{2m} \curvearrowleft Sp_{2m} \longleftrightarrow SO_{2n} \curvearrowright equivariant slice \curvearrowleft SO_{2m+1}$ (orthosymplectic quiver) Relative Langlands Duality Conjecture (Ben-Zvi, Sakellaridis, Venkatesh)

These relations hold at all `tiers' of the Langlands duality (global, local, geometric, arithmetic, etc)

Arithmetic: $\mathcal{L}(C, \mathbf{G} \frown \mathbf{M})$, $\mathcal{V}(C, \mathbf{G} \frown \mathbf{M})$ are `function' on moduli spaces.

Local : $C = D^*$ (formal punctured disk) \Rightarrow one upper categorical level

Geometric Langlands predicts an equivalence of 2-categories. Hence $\mathcal{L}(D^*, \mathbf{G} \curvearrowright \mathbf{M})$, $\mathcal{V}(D^*, \mathbf{G} \curvearrowright \mathbf{M})$ are categories.

Then $\mathcal{L}(D^*, \mathbf{G} \frown \mathbf{M}) \longleftrightarrow \mathcal{V}(D^*, \mathbf{G}^{\vee} \frown \mathbf{M}^{\vee})$ means a categorical equiv.

Note that $\mathbf{G} \curvearrowright \mathbf{M} \longleftrightarrow \mathbf{G}^{\vee} \curvearrowright \mathbf{M}^{\vee}$ is independent of C, or all tiers.

Question. How do we compute $\mathbf{G}^{\vee} \curvearrowright \mathbf{M}^{\vee}$ from $\mathbf{G} \curvearrowright \mathbf{M}$?

Gaiotto-Witten : This is a `cousin' of 3D mirror symmetry BZSV : Use local equivalence to recover $G^\vee \curvearrowright M^\vee$

Either way, \mathbf{M}^{\vee} is analog of Coulomb branch of a 3d QFT theory associated with $\mathbf{G} \curvearrowright \mathbf{M}$, defined mathematically by Braverman-Finkelberg-N.

I do not review the detail. Very roughly (after assuming $\mathbf{M}=T^*\mathbf{N}$)

From $\mathbf{G} \curvearrowright \mathbf{M}$, we construct a moduli space of \mathbf{G} - bundles and \mathbf{N} -valued sections over the raviolo space $D \cup_{D^*} D$.

Next we define a commutative ring from homology of this moduli sp.

Finally we recover \mathbf{M}^{ee} as $\mathbb{C}[\mathbf{M}^{ee}] =$ the commutative ring.

Questions. (1) How to define ${f G}^{ee} \curvearrowright {f M}^{ee}$ for more general ${f G} \curvearrowright {f M}$, not necessarily ${f M} = T^*{f N}$?

(2) When \mathbf{M} is singular?

e.g. $\mathbf{G} \curvearrowright T^*\mathbf{G} \rightsquigarrow \mathbf{G}^{\vee} \curvearrowright \mathcal{N}_{\mathbf{G}^{\vee}}$ (nilpotent cone)

How to define the S-dual of $\mathcal{N}_{\mathbf{G}^{ee}}$?

(3) Is this a duality ? Namely is $\mathbf{G} \curvearrowright \mathbf{M}$ the S-dual of $\mathbf{G}^{ee} \curvearrowright \mathbf{M}^{ee}$? At this moment, we only check this by calculating the S-dual.

Thank you very much !